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NUMBER THEORY

• The part of mathematics devoted to the study of the set of integers and
their properties is known as Number Theory. In this lecture we will
develop some of the important concepts of Number Theory including
many of those used in computer science.



NUMBER THEORY

• In this lecture we introduce several important applications of number
theory. In particular, we will use number theory to generate
pseudorandom numbers, to assign memory locations to computer files,
and to find check digits used to detect errors in various kinds of
identification numbers. We also introduce the subject of cryptography.
Number theory plays an essentially role both in classical cryptography,
first used thousands of years ago, and modern cryptography, which
plays an essential role in electronic communication.



NUMBER THEORY

• We will show how the ideas we develop can be used in cryptographical
protocols, introducing protocols for sharing keys and for sending signed
messages. Number theory, once considered the purest of subjects, has
become an essential tool in providing computer and Internet security.



DIVISIBILITY AND MODULAR 
ARITHMETIC

• The ideas that we will develop here are based on the notion of
divisibility. Division of an integer by a positive integer produces a
quotient and a remainder. Working with these remainders leads to
modular arithmetic, which plays an important role in mathematics and
which is used throughout computer science. We will discuss some
important applications of modular arithmetic later, including generating
pseudorandom numbers, assigning computer memory locations to files,
constructing check digits, and encrypting messages.



DIVISION 

• When one integer is divided by a second nonzero integer, the quotient 
may or may not be an integer. For example, !"

#
= 4 is an integer, 

whereas !!
$
= 2.75 is not. This leads to Definition 1.



DIVISION

• DEFINITION 1. If 𝑎 and 𝑏 are integers with 𝑎 ≠ 0, we say that 𝑎
divides 𝑏 if there is an integer 𝑐 such that 𝑏 = 𝑎𝑐, or equivalently, if 𝑏/𝑎
is an integer. When 𝑎 divides 𝑏 we say that 𝑎 is a factor or divisor of 𝑏,
and that 𝑏 is a multiple of 𝑎. The notation 𝑎|𝑏 denotes that 𝑎 divides 𝑏.
We write 𝑎 ∤ 𝑏 when 𝑎 does not divide 𝑏.

• Remark: We can express 𝑎|𝑏 using quantifiers as ∃𝑐(𝑎𝑐 = 𝑏), where
the universe of discourse is the set of integers.



EXAMPLES

• Determine whether 3|7 and whether 3|12.

• Let 𝑛 and 𝑑 be positive integers. How many positive integers not
exceeding 𝑛 are divisible by 𝑑?



EXAMPLES

• Let 𝑛 and 𝑑 be positive integers. How many positive integers not
exceeding 𝑛 are divisible by 𝑑?

In Figure, a number line indicates which integers are divisible by the
positive integer 𝑑.



DIVISION

THEOREM 1. Let 𝑎, 𝑏, and 𝑐 be integers, where 𝑎 ≠ 0. Then

• (i) if 𝑎|𝑏 and 𝑎|𝑐, then 𝑎|(𝑏 + 𝑐);

• (ii) if 𝑎|𝑏, then 𝑎|𝑏𝑐 for all integers 𝑐;

• (iii) if 𝑎|𝑏 and 𝑏|𝑐, then 𝑎|𝑐.



DIVISION

• COROLLARY 1. If 𝑎, 𝑏, and 𝑐 are integers, where 𝑎 ≠ 0, such that
𝑎|𝑏 and 𝑎|𝑐, then 𝑎|(𝑚𝑏 + 𝑛𝑐)whenever 𝑚 and 𝑛 are integers.



THE DIVISION ALGORITHM

• When an integer is divided by a positive integer, there is a quotient and a
remainder, as the division algorithm shows.

THEOREM 2. (THE DIVISION ALGORITHM) Let 𝑎 be an integer and 𝑑
a positive integer. Then there are unique integers 𝑞 and 𝑟, with 0 ≤ 𝑟 < 𝑑,
such that 𝑎 = 𝑑𝑞 + 𝑟.



THE DIVISION ALGORITHM

DEFINITION 2. In the equality given in the division algorithm, 𝑑 is
called the divisor, 𝑎 is called the dividend, 𝑞 is called the quotient, and 𝑟
is called the remainder. This notation is used to express the quotient and
remainder:

• 𝑞 = 𝑎 𝒅𝒊𝒗 𝑑, 𝑟 = 𝑎 𝒎𝒐𝒅 𝑑.



THE DIVISION ALGORITHM

• Remark: Note that both 𝑎 𝒅𝒊𝒗 𝑑 and 𝑎 𝒎𝒐𝒅 𝑑 for a fixed 𝑑 are functions on
the set of integers.

• Furthermore, when 𝑎 is an integer and 𝑑 is a positive integer, we have

𝑞 = 𝑎 𝒅𝒊𝒗 𝑑 = [𝑎/𝑑] and  𝑟 = 𝑎 𝒎𝒐𝒅 𝑑 = 𝑎 − 𝑑𝑞.



EXAMPLES

• What are the quotient and remainder when 101 is divided by 11? 

• What are the quotient and remainder when −11 is divided by 3?



THE DIVISION ALGORITHM

• Remark: A programming language may have one, or possibly two,
operators for modular arithmetic, denoted by mod (in BASIC, Maple,
Mathematica, EXCEL, and SQL), % (in C, C++, Java, and Python),
rem (in Ada and Lisp), or something else. Be careful when using them,
because for 𝑎 < 0, some of these operators return 𝑎 − 𝑚([𝑎/𝑚] +
1) instead of 𝑎 𝒎𝒐𝒅𝑚 = 𝑎 −𝑚[𝑎/𝑚]. Also, unlike 𝑎 𝒎𝒐𝒅𝑚, some
of these operators are defined when 𝑚 < 0, and even when 𝑚 = 0.



MODULAR ARITHMETIC

• In some situations we care only about the remainder of an integer when
it is divided by some specified positive integer. For instance, when we
ask what time it will be (on a 24-hour clock) 50 hours from now, we
care only about the remainder when 50 plus the current hour is divided
by 24.



MODULAR ARITHMETIC

• Because we are often interested only in remainders, we have special
notations for them. We have already introduced the notation
𝑎 𝒎𝒐𝒅𝑚 to represent the remainder when an integer 𝑎 is divided by
the positive integer 𝑚. We now introduce a different, but related,
notation that indicates that two integers have the same remainder when
they are divided by the positive integer 𝑚.



MODULAR ARITHMETIC

• DEFINITION 3. If 𝑎 and 𝑏 are integers and 𝑚 is a positive integer,
then 𝑎 is congruent to 𝑏 modulo 𝑚 if 𝑚 divides 𝑎 − 𝑏. We use the
notation 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) to indicate that 𝑎 is congruent to 𝑏 modulo 𝑚.
We say that 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) is a congruence and that 𝑚 is its modulus
(plural moduli). If 𝑎 and 𝑏 are not congruent modulo 𝑚, we write

𝑎 ≢ 𝑏(𝑚𝑜𝑑 𝑚).



MODULAR ARITHMETIC

• Although both notations 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and 𝑎 𝒎𝒐𝒅𝑚 = 𝑏 include
“𝑚𝑜𝑑,” they represent fundamentally different concepts. The first
represents a relation on the set of integers, whereas the second
represents a function.

• However, the relation 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and the 𝒎𝒐𝒅𝑚 function are
closely related, as described in Theorem 3.



MODULAR ARITHMETIC

• THEOREM 3. Let 𝑎 and 𝑏 be integers, and let 𝑚 be a positive integer.
Then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) if and only if 𝑎 𝒎𝒐𝒅𝑚 = 𝑏 𝒎𝒐𝒅𝑚.



EXAMPLE

• Determine whether 17 is congruent to 5 modulo 6

• and whether 24 and 14 are congruent modulo 6.



MODULAR ARITHMETIC

• The great German mathematician Karl Friedrich Gauss developed the
concept of congruences at the end of the eighteenth century.

• The notion of congruences has played an important role in the
development of number theory. Theorem 4 provides a useful way to
work with congruences.



MODULAR ARITHMETIC

THEOREM 4. Let 𝑚 be a positive integer. The integers 𝑎 and 𝑏 are 
congruent modulo 𝑚 if and only if there is an integer 𝑘 such that

𝑎 = 𝑏 + 𝑘𝑚.



MODULAR ARITHMETIC

• The set of all integers congruent to an integer 𝑎 modulo 𝑚 is called the
congruence class of 𝑎 modulo 𝑚.

THEOREM 5. Let 𝑚 be a positive integer. If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and

𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑚), then

𝑎 + 𝑐 ≡ 𝑏 + 𝑑 𝑚𝑜𝑑 𝑚 𝑎𝑛𝑑 𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑚).



EXAMPLE

• Because 7 ≡ 2(𝑚𝑜𝑑 5) and 11 ≡ 1(𝑚𝑜𝑑 5), it follows from

Theorem 5 that
18 = 7 + 11 ≡ 2 + 1 = 3(𝑚𝑜𝑑 5),

and that

77 = 7 ⋅ 11 ≡ 2 ⋅ 1 = 2(𝑚𝑜𝑑 5).



ARITHMETIC MODULO 𝒎

• We can define arithmetic operations on ℤ%, the set of nonnegative
integers less than 𝑚, that is, the set {0, 1, . . . , 𝑚 − 1}. In particular, we
define addition of these integers, denoted by +% by

𝑎 +% 𝑏 = (𝑎 + 𝑏)𝒎𝒐𝒅𝑚, 
where the addition on the right-hand side of this equation is the ordinary
addition of integers, and we define multiplication of these integers,
denoted by ⋅% by

𝑎 ⋅% 𝑏 = 𝑎 ⋅ 𝑏 𝒎𝒐𝒅𝑚



HOMEWORK: EXERCISES 6, 10, 12, 14, 
22, 24 ON PP. 244-245; 



INTEGER REPRESENTATIONS AND 
ALGORITHMS

• Integers can be expressed using any integer greater than one as a base,
as we will show. Although we commonly use decimal (base 10),
representations, binary (base 2), octal (base 8), and hexadecimal (base
16) representations are often used, especially in computer science.
Given 𝑎 base 𝑏 and an integer 𝑛, we will show how to construct the
base 𝑏 representation of this integer. We will also explain how to
quickly covert between binary and octal and between binary and
hexadecimal notations.



INTEGER REPRESENTATIONS AND 
ALGORITHMS

• The term algorithm originally referred to procedures for performing
arithmetic operations using the decimal representations of integers.
These algorithms, adapted for use with binary representations, are the
basis for computer arithmetic. They provide good illustrations of the
concept of an algorithm and the complexity of algorithms. For these
reasons, they will be discussed here.



REPRESENTATIONS OF INTEGERS

• In everyday life we use decimal notation to express integers. For
example, 965 is used to denote

9 L 10" + 6 L 10 + 5

However, it is often convenient to use bases other than 10. 



REPRESENTATIONS OF INTEGERS

• In particular, computers usually use binary notation (with 2 as the base)
when carrying out arithmetic, and octal (base 8) or hexadecimal (base
16) notation when expressing characters, such as letters or digits. In
fact, we can use any integer greater than 1 as the base when expressing
integers. This is stated in Theorem 1.



REPRESENTATIONS OF INTEGERS

• THEOREM 1. Let 𝑏 be an integer greater than 1. Then if 𝑛 is a
positive integer, it can be expressed uniquely in the form

𝑛 = 𝑎&𝑏& + 𝑎&'!𝑏&'! +⋯+ 𝑎!𝑏 + 𝑎(, 

where 𝑘 is a nonnegative integer, 𝑎(, 𝑎!, … , 𝑎& are nonnegative integers
less than 𝑏, and 𝑎& ≠ 0.



REPRESENTATIONS OF INTEGERS

• The representation of 𝑛 given in Theorem 1 is called the base 𝒃
expansion of 𝒏. The base 𝑏 expansion of 𝑛 is denoted by

(𝑎&𝑎&'! … 𝑎!𝑎()) .

For instance, 245 * represents 2 ⋅ 8" + 4 ⋅ 8 + 5. 

• Typically, the subscript 10 is omitted for base 10 expansions of integers
because base 10, or decimal expansions are commonly used to
represent integers.



REPRESENTATIONS OF INTEGERS

BINARY EXPANSIONS 

• Choosing 2 as the base gives binary expansions of integers. In binary
notation each digit is either a 0 or a 1. In other words, the binary
expansion of an integer is just a bit string. Binary expansions (and
related expansions that are variants of binary expansions) are used by
computers to represent and do arithmetic with integers.



EXAMPLE

• What is the decimal expansion of the integer that has

1 0101 1111 "

as its binary expansion?



REPRESENTATIONS OF INTEGERS

OCTAL AND HEXADECIMAL EXPANSIONS

• Among the most important bases in computer science are base 2, base
8, and base 16. Base 8 expansions are called octal expansions and base
16 expansions are hexadecimal expansions.



EXAMPLES 

• What is the decimal expansion of the number with octal expansion
7016 *?

Sixteen different digits are required for hexadecimal expansions. Usually,
the hexadecimal digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and
𝐹, where the letters 𝐴 through 𝐹 represent the digits corresponding to the
numbers 10 through 15 (in decimal notation).

• What is the decimal expansion of the number with hexadecimal
expansion 2𝐴𝐸0𝐵 !+?



REPRESENTATIONS OF INTEGERS

BASE CONVERSION  

• We will now describe an algorithm for constructing the base 𝑏
expansion of an integer 𝑛. First, divide 𝑛 by 𝑏 to obtain a quotient and
remainder, that is,

𝑛 = 𝑏𝑞( + 𝑎(,   0 ≤ 𝑎( < 𝑏. 

• The remainder, 𝑎(, is the rightmost digit in the base 𝑏 expansion of 𝑛.
Next, divide 𝑞( by 𝑏 to obtain

𝑞( = 𝑏𝑞! + 𝑎!, 0 ≤ 𝑎! < 𝑏.



REPRESENTATIONS OF INTEGERS

BASE CONVERSION  

• We see that 𝑎! is the second digit from the right in the base 𝑏 expansion
of 𝑛. Continue this process, successively dividing the quotients by 𝑏,
obtaining additional base 𝑏 digits as the remainders. This process
terminates when we obtain a quotient equal to zero. It produces the base
𝑏 digits of 𝑛 from the right to the left.



EXAMPLE

• Find the octal expansion of 12345 !(. 

• Find the binary expansion of 241 !(.



REPRESENTATIONS OF INTEGERS



REPRESENTATIONS OF INTEGERS

Algorithms for Integer Operations 

• The algorithms for performing operations with integers using their
binary expansions are extremely important in computer arithmetic. We
will describe algorithms for the addition and the multiplication of two
integers expressed in binary notation.



REPRESENTATIONS OF INTEGERS

• Throughout this discussion, suppose that the binary expansions of 𝑎
and 𝑏 are

𝑎 = 𝑎,'!…𝑎!𝑎( ",   𝑏 = 𝑏,'!…𝑏!𝑏( "

so that 𝑎 and 𝑏 each have 𝑛 bits (putting bits equal to 0 at the beginning
of one of these expansions if necessary).

• We will measure the complexity of algorithms for integer arithmetic in
terms of the number of bits in these numbers.



REPRESENTATIONS OF INTEGERS

ADDITION ALGORITHM

• Consider the problem of adding two integers in binary notation. To add
𝑎 and 𝑏, first add their rightmost bits. This gives 𝑎( + 𝑏( = 𝑐( ⋅ 2 + 𝑠(,
where 𝑠( is the rightmost bit in the binary expansion of 𝑎 + 𝑏 and 𝑐( is
the carry, which is either 0 or 1.

• Then add the next pair of bits and the carry, 𝑎! + 𝑏! + 𝑐( = 𝑐! ⋅ 2 +
𝑠!, where 𝑠! is the next bit (from the right) in the binary expansion of
𝑎 + 𝑏, and 𝑐! is the carry.



REPRESENTATIONS OF INTEGERS

ADDITION ALGORITHM

• Continue this process, adding the corresponding bits in the two binary
expansions and the carry, to determine the next bit from the right in the
binary expansion of 𝑎 + 𝑏.

• At the last stage, add 𝑎,'!, 𝑏,'!, and 𝑐,'" to obtain 𝑐,'! ⋅ 2 + 𝑠,'!.
The leading bit of the sum is 𝑠, = 𝑐,'!. This procedure produces the
binary expansion of the sum, namely, 𝑎 + 𝑏 = 𝑠,𝑠,'!…𝑠!𝑠( "



EXAMPLE

• Add 𝑎 = 1110 " and 𝑏 = 1011 ".



REPRESENTATIONS OF INTEGERS

MULTIPLICATIONALGORITHM
• Next, consider the multiplication of two 𝑛-bit integers 𝑎 and 𝑏. The
conventional algorithm (used when multiplying with pencil and paper)
works as follows. Using the distributive law, we see that

𝑎𝑏 = 𝑎 𝑏!2! + 𝑏"2" +⋯+ 𝑏#$"2#$" =
𝑎 𝑏!2! + 𝑎 𝑏%2" +⋯+ 𝑎(𝑏#$"2#$").

• We can compute 𝑎𝑏 using this equation.



EXAMPLE

• Find the product of 𝑎 = 110 " and 𝑏 = 101 ".



HOMEWORK: EXERCISES 2, 4, 6, 8, 22, 
32 ON PP. 255-256; 


